XG-BM02X 蓝牙透传模块

Bluetooth Low Energy 5.0 Module

一、	概述		2
二、	性能特点		2
三、	产品应用		2
四、	应用示意图	<u></u>	3
五、	尺寸与管脚	脚定义	3
六、	透传协议位	吏用说明	5
七、		[指令说明	
	(一)	从模块未连接状态下的 AT 指令	5
	(<u> </u>	// (DC/C-D/) (C 3H (
八、	主模式 AT	『指令说明	10
	(一)	主模块未连接下状态的 AT 指令	10
	(<u> </u>		
九、	BLE 通信协	h议(APP 与模块通信接口)	14
十、	测试使用证	总明	14
免责	声明		20

XG-BM02X 蓝牙透传模块

Bluetooth Low Energy 5.0 Module

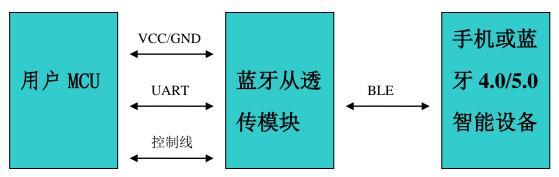
一、概述

XG-BM02X 是一款采用 nRF52832 为核心处理器的高性能、低功耗(Bluetooth Low Energy)的射频收发系统模块,拥有超小体积封装,整体尺寸为 17.9*15.3mm, 支持完整的低功耗蓝牙 4.0 协议以及蓝牙 5.0 协议高速通信功能,可以应用各种物联网应用以及无线应用场景。

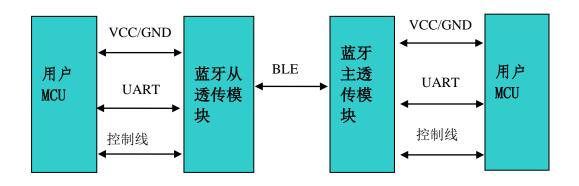
用户的 MCU 通过通用串口 (UART) 跟模块进行连接,可实现和移动智能设备进行数据的 双向通讯。模块接收到来自用户 CPU 串口的数据后,将自动转发给移动智能设备;移动智能设备可以通过 APP 发送数据到模块,模块将收到的数据通过串口发送给用户的 MCU。

模块支持通过特定的串口 AT 指令配置通信参数(例如串口波特率、蓝牙连接间隔等), 并且支持掉电保存。

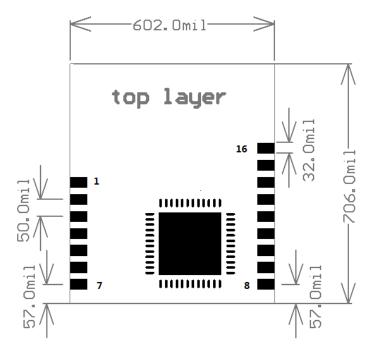
二、性能特点


- ❖ 透明传输(桥接方式),使用方便快捷,无蓝牙协议开发经验者亦可使用;
- ❖ 用户接口采用标准的 UART (TTL) 接口,双向数据收发,操作简单;
- ❖ 支持串口 AT 指令,用户可修改模块的串口波特率(默认 115200bps)、名称、MAC 地址等基本参数;
- ❖ 任意串口数据包长度,无限制,更自由;
- ❖ 串口最高支持 460800 bps 波特率;
- ❖ 主从一体,可通过 AT 指令切换模式;
- ❖ 蓝牙广播数据可设置,可兼容 ibeacon 模式;
- ❖ 主机模式下,可扫描到从机广播数据并通过串口输出
- ❖ 通信距离: 30~100 米
- ❖ 通信速率: 支持蓝牙 5.0 高速通信, 最高可达 30Kbyte/s;
- ❖ 供电电压: 1.8~3.6V (3.3V typical);
- ❖ 模块尺寸: 15.2 *17.9mm;
- ❖ 工作温度: -20° C~85° C;

三、产品应用


- ❖ 短距离自动化数据采集;
- ❖ 工业控制,监测;
- ❖ 掌机、手持机、POS 机;
- ❖ 无线键盘、无线鼠标、游戏手柄;
- ❖ 蓝牙调光、灯控系统:
- ❖ 智能家居控制系统;
- ❖ 防丢器:
- ❖ 手机附属产品;
- ❖ ibeacon 应用:

四、应用示意图



蓝牙模块与智能设备通讯

蓝牙模块与蓝牙模块通讯

五、尺寸与管脚定义

www.x-ang.cn

管脚序列	管脚简写	管脚标号	输入/输出	说明
1	/	GND	/	模块地
2	/	VCC	/	模块电源正极 1.8 ~ 3.6 V
3	NC	P27	NC	
4	NC	P28/AIN4	NC	
5	NC	P29/AIN5	NC	
6	NC	P30/AIN6	NC	
7	NC	P31/AIN7	NC	
8	UART_TX	P14	OUT	串口数据发送管脚
9	UART_RX	P15	IN	串口数据接收管脚
10	BLE_STATE	P16	OUT	从模式连接状态指示: 蓝牙连接状态指示管脚,连接上之后为高电平,未连接为低电平,在未连接状态下可进行AT指令设置 主模式连接状态指示: 蓝牙状态指示管脚,如果接led请串联电阻,否则容易由于电流过大造成模块损坏。模块未配对时的搜索状态指示: 蓝牙状态指示管脚,以大约100ms的周期电平取反输出; 在此模式下主模块会去搜索一定范围内的从模块(故可以把一个从模块靠近主模块,进行靠近配对),当搜索到从模块之后就会去配对连接,并且绑定记录从模块的mac地址。模块已配对时的搜索状态指示: 蓝牙状态指示管脚以大约100ms的周期电平取反输出; 当主模块已经配对连接时,如果断开连接或者重新上电,就会进入此状态,会自动去连接绑定记录的从模块。这两种搜索状态在连接上之后,蓝牙状态指示管脚都为高电平
11	NC	P17	NC	
12	UART_ENABLE	P18	IN	串口使能管脚,高电平(上升沿触发)打开串口,低电平关闭串口,关串口可以降低功耗; 注:上电测试模块必须把该管脚接高电平,否则串口是关闭状态,串口无法输入/输出数据
13	INT	P19	OUT	模块接收蓝牙数据的指示管脚,接收到数据时为高电平, 无数据时为低电平
14	14 UART_RESET P20 IN (内部弱上 拉)			串口复位管脚,拉低 100ms 以上恢复到默认波特率
15	/	SWDCLK	/	SWD 时钟管脚
16	/	SWDDIO	/	SWD 数据管脚

六、透传协议使用说明

串口透传是指,模块通过通用串口和用户 MCU 连接,建立起用户 MCU 与移动设备之间的双向通讯。在模块蓝牙未连接的状态(可通过检查 BLE_STATE 管脚来确定模块蓝牙的当前作态),用户可通过串口 AT 指令对模块的基本蓝牙参数进行修改,AT 指令修改成功后模块统一回复"OK\r"("AT+RX、AT+VERSION"等查看信息类指令除外),而在连接状态下只能识别断开连接或者关闭蓝牙等少数 AT 指令。

从模式使用步骤:上电默认为从模式

- 1、串口硬件协议: 默认 115200bps, 8, 无校验位, 1 停止位(UART_ENABLE 串口使能控制, 高电平使能模块串口功能)
- 2、模块的蓝牙默认连接间隔为 20ms, 可以通过 AT 命令调整蓝牙连接间隔;
- 3、模块默认的设备名字为: BMO2X-xxxx (xxxx 为两个字节的随机数);
- 4、使用 app 连接上模块即可收发数据。

主模式使用步骤:

主模块未绑定从设备的情况下方法 1:

- 1、串口硬件协议: 默认 115200bps, 8, 无校验位, 1 停止位(UART ENABLE 串口使能控制, 高电平使能模块串口功能);
- 2、主/从模式选择操作命令设置为主模式(AT+ROLE=M\r);
- 3、使用扫描命令(AT+SCAN: RSSI=-50\r,详细请看"启动扫描操作命令"章节)扫描从设备;
- 4、使用连接命令(AT+CONNECT=E3BFA3B94180\r,详细请看"启动连接从设备操作命令"章节),连接指定从设备,连接上之后会自动绑定从设备,这时可以收发数据;
- 5、断开连接后,会自动扫描绑定的设备,且去连接它,即绑定后断开会自动重连。

主模块未绑定从设备的情况下方法 2:

- 1、串口硬件协议: 默认 115200bps, 8, 无校验位, 1 停止位(UART_ENABLE 串口使能控制, 高电平使能模块串口功能);
- 2、主/从模式选择操作命令设置为主模式(AT+ROLE=M\r);
- 3、使用扫描后自动连接命令(AT+SAC:RSSI=-50\r,详细请看"扫描后自动连接操作命令"章节),会自动扫描、连接设备,连接后自动绑定设备,这时可以收发数据;
- 4、断开连接后,会自动扫描绑定的设备,且去连接它,即绑定后断开会自动重连。

主模块已绑定从设备的情况下去绑定新的从设备:

- 1、串口硬件协议: 默认 115200bps, 8, 无校验位, 1 停止位(UART ENABLE 串口使能控制, 高电平使能模块串口功能);
- 2、使用关闭蓝牙命令(AT+DISABLE_BLE\r)关闭蓝牙;
- 3、使用取消绑定命令(AT+CLRBOND\r),清除绑定的从设备;
- 4、使用未绑定设备方法1或者方法2,去连接绑定新的从设备。

七、从模式 AT 指令说明

(一) 从模块未连接状态下的 AT 指令

AT 指令大部分在蓝牙模块未连接的状态下才有用,在未连接状态下,带有 AT 开头的数据包会被默认为 AT 指令并被解析,返回处理结果。

1、测试命令

命令格式: AT\r

返回值: OK\r

内容:发送 AT 测试指令,返回值 OK 表示模块 AT 指令测试成功。

2、主/从模式命令

命令格式: AT+ROLE=M\r

返回值: OK\r

内容: 修改模块为主模式,返回值 OK 表示设置成功。

命令格式: AT+ROLE?\r 返回值: M\r 或者 S\r

内容: 返回模块当前的模式为主模式 或者从模式

注: 默认模式为从模式

3、 MAC 地址命令

命令格式: AT+ADDR?\r

内容: 返回模块当前的 MAC 地址: xxxxxxxxxxx 如: F23456789ABC

命令格式: AT+ADDR= F23456789ABC\r

返回值: OK\r

内容: 重新修改模块的 MAC 地址为: F23456789ABC, 返回值 OK 表示已经重设 MAC 地址成功。

注:在设置 mac 地址时,模块内部会自动把高字节 | 0xc0,如 0xF2=0xF2 | 0xc0;默认 mac 地址为厂家芯片内部 mac 地址

4、 串口通讯波特率命令

命令格式: AT+BAUD=19200\r

返回值: OK\r

ERROR\r

内容: 重新修改模块通讯的串口波特率为 19200bps, 返回 OK 提示已经修改成功, 返回 ERROR 则表示新串口波特率修改失败, 原因可能是设定值格式不对或者不支持该波特率。

命令格式: AT+BAUD?\r

返回值: 19200\r

内容: 查询当前模块的串口通讯波特率,模块返回当前设置的波特率 19200bps。

注: 默认波特率为: 115200

当前模块支持的串口波特率为: 4800/9600/14400/19200/28800/38400/57600/76800/115200/230400/250000/460800

5、 设备名称命令

命令格式: AT+NAME= BM02X-12345\r

返回值: OK\r

ERROR\r

内容: 重新命名模块的名称为: BM02X-12345,名称最大长度不超过 25 个字符的长度,返回值 0K 表示模块已经成功重新命名为新名称,返回 ERROR 表示命名失败。

命令格式: AT+NAME?\r

返回值: BM02X-12345\r

内容: 查询模块当前的设备名称, 串口返回模块当前的设备名称: BM02X-12345

注: 默认名称为: BM02X-xxxx (xxxx 为两个字节的随机数)

6、 模块参数读取命令

命令格式: AT+RX\r

返回值: NAME:BM02X-12345, MAC:F23456789ABC\r

内容:查询模块当前的参数,返回模块当前设置的设备名称和设备的MAC地址。

7、 模块发射功率设置命令

命令格式: AT+RFPM=5\r

返回值: OK\r

ERROR\r

内容: 重新设置模块的发射功率,如例设置模块的发射功率为第 5 级发射功率 -16 dBm,返回 OK 表示功率重设成功,返回 ERROR 表示功率重设失败,原因可能设置的功率等级不在等级列表中。在模块发射功率设置成功后,模块内部会自动软件复位,重新设置成新的发射功率

命令格式: AT+RFPM?\r

返回值: 5\r

内容: 查询当前蓝牙模块的发射功率配置, 返回当前的模块设置的发射功率值: -16 dBm。

注: 蓝牙模块当前支持设置的发射功率等级如下表:

功率等级	0	1	2	3	4	5	6	7
功率值	+4dBm	OdBm	-4dBm	-8dBm	-12dBm	-16dBm	-20dBm	-40dBm

注:默认发射功率为4dBm

8、 模块复位命令

命令格式: AT+RESET\r

返回值: OK\r

内容: 模块复位命令,返回 OK 后,模块复位重新启动。

9、 恢复默认配置命令

命令格式: AT+DEFAULT\r

返回值: OK\r

内容:恢复模块的配置参数为默认的参数,MAC 地址也恢复成出厂默认的地址,返回 OK 表示模块恢复成功。模块会内部软件复位重启。

10、 查询模块版本号命令

命令格式: AT+VERSION\r

返回值: V1.1.1\r (内容: 查询模块当前的版本,返回模块当前的版本 V1.1.1 版)

11、自定义广播数据命令 (Manufacturer specific data)

命令格式: AT+ADD=0123456A\r

返回值: OK\r

ERROR\r

注: 默认是数据为支持微信摇一摇的 ibeacon 数据格式

12、 蓝牙广播时间间隔设置命令

命令格式: AT+ADP=1000\r

返回值: OK\r

ERROR\r

内容: 蓝牙广播有效的时间间隔设置为 100ms—4000ms,如例重新设置蓝牙的广播时间间隔为 1000ms,返回 OK 表示重设成功,ERROR 表示重设失败。

命令格式: AT+ADP?\r

返回值: 1000\r

内容: 查询当前蓝牙模块的广播时间间隔配置, 返回当前的模块设置的广播时间间隔: 1000ms。

注: 默认广播间隔为 500ms

13、 蓝牙连接时间间隔重设命令

命令格式: AT+CIT=300\r

返回值: OK\r

ERROR\r

内容:有效的蓝牙连接时间间隔为 20ms—1200ms,默认为 20ms,如例重新设置蓝牙的连接时间间隔为 300ms,返回 0K 表示重设成功,返回 ERROR 表示重设失败。

命令格式: AT+CIT?\r

返回值: 300\r

内容: 查询当前蓝牙模块的连接时间间隔配置, 返回当前的模块设置的连接时间间隔: 300ms。

推荐的连接间隔: 20/50/100/200/500/1000. 使用其他连接间隔请测试是否可以被相应的主机支持。

14、工作模式设置命令

命令格式: AT+MODE=1\r

返回值: OK\r

ERROR\r

内容:模块可以通过 AT 指令设置进入不同的工作模式,工作模式设置在复位或者掉电后不保持,有两种种模式可选,分别为: 0,1; 示例表示设置工作模式为模式 1.

在模式 0 时,蓝牙正常广播,蓝牙和串口可以工作,此模式为默认模式,复位或者掉电复位后会进入此模式;

在模式1时,蓝牙广播被关闭,即蓝牙不工作,而串口可以工作,AT 指令设置可以正常使用;

15、广播厂商 ID 设置 (company_identifier) 操作命令

命令格式: AT+ADCID=4C00\r

返回值: OK\r

 $\mathsf{ERROR} \backslash r$

内容: 重新设置广播的厂商 I D, 必须为两个字节的十六进制数, , 如例重新设置厂商 ID 为 0x004C, 返回 0K 表示重设成功, 返回 ERROR 表示重设失败。

命令格式: AT+ADCID?\r

返回值: 4C00\r

内容:查询当前蓝牙模块的广播的厂商 I D,返回当前的模块设置的广播的厂商 I D: 0x004C。 注:默认数据为 0x004C,通过此命令可以设置兼容不同规格的 beacon(如: Alibeacon, ibeacon等)

16、 广播与可连接性模式设置操作命令

命令格式: AT+ADM=1\r

返回值: OK\r

ERROR\r

内容: 重新设置模块的广播模式,如例设置模块的广播模式为 1,返回 0K 表示重设成功,返回 ERROR 表示重设失败。 有三种模式选择: 0,1,2

模式 0: 此模式为默认模式。可以被连接的广播,上电后可以被手机扫描到,被连接上之后广播停止,无法被扫描到。

模式 1: 可以被连接的广播,上电后可以被手机扫描到,被连接上之后继续广播,还可以被其他手机扫描到。此模式下,无 论是广播状态还是在透传数据状态都可以被其他手机扫描到

模式 2: 不可以被连接的广播,此模式下可以被扫描到广播数据,但不可以被连接上进行数据透传传输。

命令格式: AT+ADM?\r

返回值: 1\r

内容: 查询当前蓝牙模块的广播模式,返回当前的模块设置的广播模式1。

注: 默认模式为模式 0

(二) 从模块连接状态下的 AT 指令

连接状态下发送 AT 指令时,必须在上一次发送完数据 10ms 之后,

1、主动断开连接操作命令

命令格式: AT+DISCONNECT\r

返回值: OK\r

内容: 使模块主动断开蓝牙连接, 断开连接后会自动进入扫描, 扫描已经绑定的从设备

八、主模式 AT 指令说明

(一) 主模块未连接下状态的 AT 指令

1、 测试命令

命令格式: AT\r

返回值: OK\r

内容:发送 AT 测试指令,返回值 OK 表示模块 AT 指令测试成功。

2、 主/从模式选择命令

命令格式: AT+ROLE=M\r

返回值: OK\r

内容:修改模块为主模式,返回值 OK 表示设置成功。

命令格式: AT+ROLE?\r

返回值: M\r 或者 S\r

内容: 返回模块当前的模式为主模式 或者从模式

注: 默认模式为从模式

3、 串口通讯波特率命令

命令格式: AT+BAUD=19200\r

返回值: OK\r

ERROR\r

内容: 重新修改模块通讯的串口波特率为 19200bps, 返回 OK 提示已经修改成功, 返回 ERROR 则表示新串口波特率修改失败, 原因可能是设定值格式不对或者不支持该波特率。

命令格式: AT+BAUD?\r

返回值: 19200\r

内容: 查询当前模块的串口通讯波特率,模块返回当前设置的波特率 19200bps。

注: 默认波特率为: 115200

当前模块支持的串口波特率为:

4800/9600/14400/19200/28800/38400/57600/76800/115200/230400/250000/460800/921600/1000000

4、 模块发射功率设置命令

命令格式: AT+RFPM=5\r

返回值: OK\r

ERROR\r

内容: 重新设置模块的发射功率,如例设置模块的发射功率为第 5 级发射功率 -16 dBm, 返回 OK 表示功率重设成功,返回 ERROR 表示功率重设失败,原因可能设置的功率等级不在等级列表中。在模块发射功率设置成功后,模块内部会自动软件复位,重新设置成新的发射功率

命令格式: AT+RFPM?\r

返回值: 5\r

内容: 查询当前蓝牙模块的发射功率配置,返回当前的模块设置的发射功率值: -16 dBm。

注: 蓝牙模块当前支持设置的发射功率等级如下表:

功率等级	0	1	2	3	4	5	6	7
功率值	+4dBm	OdBm	-4dBm	-8dBm	-12dBm	-16dBm	-20dBm	-40dBm

注: 默认发射功率为 4dBm

5、 模块复位命令

命令格式: AT+RESET\r

返回值: OK\r

内容: 模块复位命令, 返回 OK 后, 模块复位重新启动。

6、 恢复默认配置命令

命令格式: AT+DEFAULT\r

返回值: OK\r

内容:恢复模块的配置参数为默认的参数,返回 0K表示模块恢复成功。模块会内部软件复位重启。

7、 查询模块版本号命令

命令格式: AT+VERSION\r

返回值: V1.1.1\r (内容: 查询模块当前的版本,返回模块当前的版本 V1.1.1版。)

8、 读取绑定状态操作命令

命令格式: AT+BOND?\r

返回值: BONDMAC=F23456789ABC\r 或者 UNBOND\r

内容:返回模块当前绑定状态,已经绑定且绑定从模块的 mac 地址为 F23456789ABC,或者没有绑定设备。

9、 取消绑定操作命令

命令格式: AT+CLRBOND\r

返回值: OK\r

内容: 返回 OK\r 表示取消绑定成功

10、 启动扫描操作命令

命令格式: AT+SCAN: RSSI=-50\r

返回值: OK\r

内容:扫描 RSSI 大于-50 的设备,并上报,返回 OK 表示模块接收命令成功。RSSI 值设置必须在大于-99 且小于-20,通过 RSSI 的值可以控制扫描不同距离从模块,一般-50 可以扫描到 1-3 米以内设备

返回值: MAC=E3BFA3B94180, RSSI=-45\r

内容: 模块扫描到 mac 地址为 E3BFA3B94180,且 RSSI=-74dB。扫描到设备之后主模块会自动停止扫描

如果已经绑定过从设备,则不会上报扫描到的从设备,只扫描绑定的从设备,而且忽略 RSSI 这参数,扫描到之后会自动连接

11、 启动持续扫描操作命令

命令格式: AT+STARTSCAN=0F\r

返回值: OK\r

内容:持续地扫描从设备广播数据,并上报,返回 OK 表示模块接收命令成功。OF 表示返回扫描到从设备的数据: MAC+RSSI+NAME+DATA; OF 这个地方可以按如下规则设置:

	名称	数值意义
Bit0	Mac 地址上报使能位	1: 设置扫描返回数据时包含 mac 地址
		0: 设置扫描返回数据是不包含 mac 地址
Bit1	RSSI 上报使能位	1: 设置扫描返回数据时包含 RSSI 值
		0: 设置扫描返回数据是不包 RSSI 值
Bit2	NAME 上报使能位	1: 设置扫描返回数据时包含蓝牙名字
		0: 设置扫描返回数据是不包蓝牙名字
Bit3	DATA 上报使能位	1: 设置扫描返回数据时包含广播数据
		0: 设置扫描返回数据是不包广播数据
Bit4	N/A	设置为0
Bit5	N/A	设置为 0
Bit6	N/A	设置为0
Bit7	N/A	设置为0

命令格式: AT+STARTSCAN=0F\r

应答返回值: OK\r

扫描返回值:

MAC=F76DEB973488, RSSI=-50, NAME=BM02X-B748, DATA=4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3\r 内容:模块扫描到 mac 地址为 F76DEB973488,RSSI 的值-50dB,蓝牙名字为 BM02X-B748,广播数据为 4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3

命令格式: AT+STARTSCAN=07\r

应答返回值: OK\r

扫描返回值: MAC=F76DEB973488, RSSI=-50, NAME=BM02X-B748\r

内容: 模块扫描到 mac 地址为 F76DEB973488, RSSI 的值-50dB, 蓝牙名字为 BM02X-B748

命令格式: AT+STARTSCAN=01\r

应答返回值: OK\r

扫描返回值: MAC=F76DEB973488\r

内容: 模块扫描到 mac 地址为 F76DEB973488

命令格式: AT+STARTSCAN=08\r

应答返回值: OK\r

扫描返回值: DATA=4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3\r

内容: 模块扫描到广播数据为 4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3

12、 启动持续扫描操作命令(返回扫描到的原始数据)

命令格式: AT+SCANRAW=1\r

返回值: OK\r

内容:此命令可设置模块进入持续扫描状态,且返回扫描到的原始数据,可以设置两种扫描模式:1和2

在模式1:

命令格式: AT+SCANRAW=1\r

应答返回值: OK\r

扫描返回值: adv:F10BE8F61D16, -35, 0201061AFF4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3\r

内容:模块扫描到 mac 地址为 F10BE8F61D16, RSSI 的值-35dB, 原始广播数据为

0201061AFF4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3

在模式 2:

命令格式: AT+SCANRAW=2\r

应答返回值: OK\r

扫描返回值:

adv:F10BE8F61D16, -33, 0201061AFF4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3\r

rsp:F10BE8F61D16, -33, 030301000B09424D3032582D38364436\r(有时候没有,因为不一定每次都扫描到或者有些从模块没

有这个数据)

内容: 模块扫描到 mac 地址为 F10BE8F61D16, RSSI 的值-33dB, 原始广播数据为

0201061AFF4C000215FDA50693A4E24FB1AFCFC6EB07647825000A0007C3,原始蓝牙扫描应答数据为

030301000B09424D3032582D38364436

13、 停止扫描操作命令

命令格式: AT+STOPSCAN\r

返回值: OK\r

内容: 控制主模块停止扫描,返回 OK 表示已停止扫描

14、 启动连接从设备操作命令

命令格式: AT+CONNECT=E3BFA3B94180\r

返回值: OK\r

内容: 启动去连接 mac 地址为 E3BFA3B94180 的从设备,<mark>连接上之后自动绑定该设备</mark>,返回 OK 表示启动连接命令接收成功。 判断是否连接成功要通过状态指示管脚检测

注: 此命令要配合前面启动扫描命令一起使用

15、扫描后自动连接操作命令

命令格式: AT+SAC:RSSI=-50\r

返回值: OK\r

内容: 扫描 RSSI 大于-50 的从设备,并在扫描之后去连接和绑定该从设备。返回 0K 表示模块接收命令成功。RSSI 值设置必须在大于-99 且小于-20,通过 RSSI 的值可以控制连接不同距离从设备,一般-50 可以扫描到 1-3 米以内设备

16、关闭蓝牙操作命令

命令格式: AT+DISABLE_BLE\r

返回值: OK\r

内容:关闭蓝牙,使得蓝牙不工作,如果是扫描状态会停止扫描,如果连接状态会断开连接,且断开连接之后不会自动扫描 (因为如果已经绑定了从设备,断开连接之后会自动扫描绑定的从设备,且自动去连接它)。关闭蓝牙之后,如果想要蓝牙 重新工作,可以使用启动扫描命令让蓝牙工作

(二) 主模块连接状态的 AT 指令

连接状态下发送 AT 指令时,必须在上一次发送完数据 10ms 之后

1、主动断开连接操作命令

命令格式: AT+DISCONNECT\r

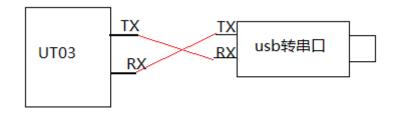
返回值: OK\r

内容: 使模块主动断开蓝牙连接, 断开连接后会自动进入扫描, 扫描已经绑定的从设备

2、 关闭蓝牙操作命令

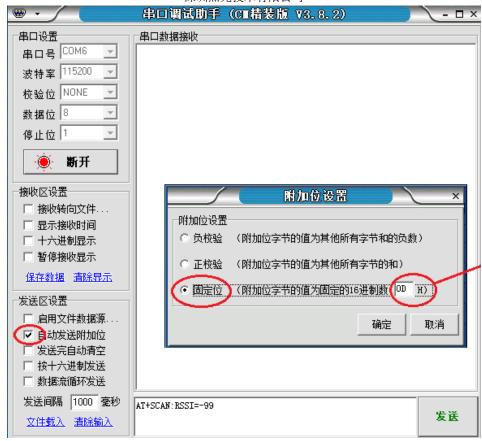
命令格式: AT+DISABLE_BLE\r

返回值: OK\r


内容:关闭蓝牙,使得蓝牙不工作,如果是扫描状态会停止扫描,如果连接状态会断开连接,且断开连接之后不会自动扫描 (因为如果已经绑定了从设备,断开连接之后会自动扫描绑定的从设备,且自动去连接它)。关闭蓝牙之后,如果想要蓝牙 重新工作,可以使用启动扫描命令让蓝牙工作

九、BLE 通信协议(APP 与模块通信接口)

名称	UUID	属性	备注 APP 发数据给模块通道		
蓝牙数据传输服务	0x6E400001B5A3F393E0A9E50E24DCCA9E				
蓝牙数据发送特征	0x6E400002B5A3F393E0A9E50E24DCCA9E	Write	APP 发数据给模块通道		
蓝牙数据接收特征	0x6E400003B5A3F393E0A9E50E24DCCA9E	Notify	模块发数据给 APP 通道		


十、测试使用说明

1. 给模块供电(1. 8-3. 6V), 把串口使能管脚 UART_ENABLE 接高电平,把 UART 的 TX、RX 管脚与 USB 转 TTL 工具的的对应 TX、RX 管脚交叉连接。

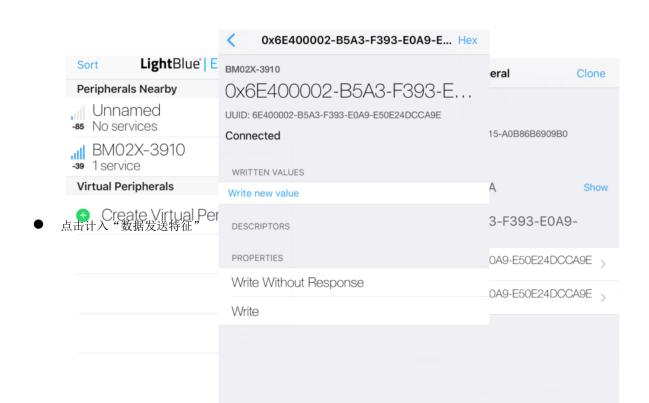
2. 打开串口调试助手 UartAssist. exe, 打开串口, 模块默认波特率为 115200, 设置发送数据时结尾带上'\r'(0x0D)功能, 如下图:

深圳熙光技术有限公司

3. 这时可输入指令测试,如 "AT" ('\r'串口调试助手会自动在字符结尾加上发出去),输入后点击发送按钮发送指令。如下图:

4. 使用 Android 系统测试数据收发,先安装我司的透传调试 app 工具。 使用 app 工具扫描蓝牙设备:

连接上之后,在"SendSingle"按钮右边输入框输入想发送的字符,点"SendSingle"按钮,发送数据(手机->模块);在串口调试助手输入想要发送的数据,按发送按钮发送(模块->手机)。



注意 "SendSingle"输入框最大可以输入 20 个字符,点击一次,会把输入框的数据发送出去;而 "SendRepeat"是为大数据测试使用,最大输入 17 个字符(超过 17 个字符无效),发送时 app 会自动添加 3 个字符做为发送包号,与输入的 17 个字符合成一个包,每包 20 个字符,点击 "SendRepeat"按钮一次,会发送 300 包数据,也就是 6000 个字符。

深圳熙光技术有限公司

- 5. 使用 IOS 测试, 先安装 LightBlue 测试工具;
- 使用测试工具扫描蓝牙设备,并点击设备名字连接:

● 点击 "Write new value", 进入数据输入界面,输入数据

D	Е	F	
Α	В	С	
7	8	9	
4	5	6	
1	2	3	
⋘	0	Done	

● 点击 "Done"后,数据会发送给模块,模块会通过串口发送给 PC,在 pc 的串口调试工具显示如下图:

免责声明

该软件或文档资料为本公司所有,并受适用的版权法保护。版权所有。如有违反,将面临相关适用法律的刑事制裁, 并承担违背此许可的条款和条件的民事责任。

本公司保留在不通知读者的情况下,修改文档或者软件相关内容的权利,对于使用中出现的任何效果,本公司不承担任何责任。